

Rappel sur les suites : Programme de la première BAC

Soit I une partie de \mathbb{N} , $I = \{n \in \mathbb{N} / n \ge n_0\}$.Une suite u, est une application de I vers \mathbb{R} . On pose $u(n) = u_n$.la suite u est alors notée $(u_n)_{n \in I}$ ou $(u_n)_{n \ge n_0}$

$(u_n)_{n\in I}$ est minorée \Leftrightarrow	$(u_n)_{n\in I}$ est majorée \Leftrightarrow	$(u_n)_{n\in I}$ est bornée \Leftrightarrow
$(\exists m \in \mathbb{R})(\forall n \in I): u_n \geq m$	$(\exists M \in \mathbb{R})(\forall n \in I)$: $u_n \leq M$	$(u_n)_{n\in I}$ est minorée et majorée
$(u_n)_{n\in I}$ est croissante \Leftrightarrow	$(u_n)_{n\in I}$ est décroissante \Leftrightarrow	$(u_n)_{n\in I}$ est constante \Leftrightarrow
$\forall n \in I; \ u_{n+1} \ge u_n$	$\forall n \in I; \ u_{n+1} \leq u_n$	$\forall n \in I; \ u_{n+1} = u_n$

Suites arithmétiques Suites géométriques

Définition

- (u_n) est une suite arithmétique si et seulement si il existe un réel r tel que
 - $(\forall n \in \mathbb{N}); \quad u_{n+1} = u_n + r$
- $\ \, \bigstar \ \, \left(u_{\scriptscriptstyle n}\right) \text{ est arithm\'etique} \Leftrightarrow \left(u_{\scriptscriptstyle n+1}-u_{\scriptscriptstyle n}\right) \text{est constante}$

Définition

 (u_n) est une suite géométrique si et seulement si il existe un réel q tel que,

$$(\forall n \in \mathbb{N}); \quad u_{n+1} = q \times u_n$$

$$(u_n)$$
 est géométrique $\Leftrightarrow \left(\frac{u_{n+1}}{u_n}\right)$ est constante

Expression de u_n en fonctions de n

 Si la suite (u_n) est arithmétique de premier terme u₀

et de raison r , pour tout entier naturel n $u_{\scriptscriptstyle n} = u_{\scriptscriptstyle 0} + nr$

- Les suites arithmétiques sont les suites de la forme $(an+b)_{n\in\mathbb{N}}$ où a et b sont deux réels
- Pour tous entiers naturels n et p, $u_n = u_p + (n-p)r$

Expression de u_n en fonctions de n

 Si la suite (u_n) est géométrique de premier terme u₀

et de raison q , pour tout entier naturel n , $u_{\scriptscriptstyle n} = u_{\scriptscriptstyle 0} \times q^{\scriptscriptstyle n}$

- les suites géométriques sont les suites de la forme $(a \times b^n)_{n \in \mathbb{N}}$ où a et b sont deux réels
- Pour tous entiers naturels n et p , $u_n = u_p \times q^{n-p}$ (Pour $q \neq 0$ si $n \leq p$)

Suites arithmétiques et moyennes arithmétiques

■ Pour tout entier naturel n non nul

$$u_{n+1} + u_{n-1} = 2u_n$$
 et $u_n = \frac{u_{n+1} + u_{n-1}}{2}$

Suites géométriques et moyennes géométriques

Pour tout entier naturel n non nul,

 $u_{n+1} \times u_{n-1} = u_n^2$ et $u_n = \sqrt{u_{n+1} \times u_{n-1}}$ (Si (u_n) est une suite positive)

Somme de terme consécutif d'une suite arithmétique

■ Pour tout entier naturel *n* non nul

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

lacktriangle Pour tous entiers naturels n et p tel que $p \leq n$,

$$\begin{split} u_{p} + u_{p+1} + \dots + u_{n} &= \frac{(n-p+1) \left(u_{p} + u_{n}\right)}{2} \\ &= \frac{\left(nbre \ de \ terme\right) \times \left(1er \ terme + dernier \ terme\right)}{2} \end{split}$$

- Somme de terme consécutif d'une suite géométrique
 - Pour tout entier naturel n et tout nombre réel q

$$1 + q + q^{2} + \dots + q^{n} = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & \text{si } q \neq 1\\ n + 1 & \text{si } q = 1 \end{cases}$$

lacktriangle Pour tous entiers naturels n et p tel que $p \le n$,

$$\begin{aligned} u_p + u_{p+1} + \dots + u_n &= u_p \frac{1 - q^{n-p+1}}{1 - q} \quad (si \ q \neq 1) \\ &= \left(1erterme\right) \times \frac{1 - q^{nbredeterme}}{1 - q} \end{aligned}$$

SAID CHERIF Année scolaire: 2018/2019 ItMAth